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1. STATEMENT OF THE PROBLEM

The control problem in the context of short-period dynamics(8) is concerned

primarily with ensuring that the Vehicle responds satisfactorily to control signals in

the form of attitude commands. It is required that response time be reasonably rapid

and that induced transients be quickly damped out. Such factors as missile flexibility,

fuel sloshing, and instrumentation dynamics have significant influence on the perform-

ance and stability quality of the vehicles' short-period response.

The present monograph is concerned with the long-period dynamics of the

vehicle; in other words, those factors that determine the capability of a vehicle to

accomplish a specific mission. Here, one deals with the trajectory equations and

with the relationship between guidance philosophy, control response, and trajectory

profile. The main result of this monograph is the development of a set of equations

that describe the motion of a space vehicle from launch to either earth impact or

orbit injection. The general formulation includes all effects that are known to be

significant for purposes of guidance and control; among these are nonspherical rotating

earth, variable mass of vehicle, eccentric c. g., and jet damping.

Such higher-order dynamic effects as fuel sloshing, bending, and gyro and

actuator dynamics are neglected for purposes of trajectory, analysis. The development

proceeds from first principles, emphasizing general concepts rather than long, detailed

equations. The motivation for this is twofold. First, virtually all aerospace contract-

ors and government agencies have developed trajectory equations that are usually tai-

lored for specific needs or missions. By exhibiting the underlying unity in all these

formulations, the assumptions and limitations of each are highlighted. Second, by

starting with the most general description, we may proceed with the simplifications

of the analysis in a systematic manner, noting where, and under what conditions, var-

ious approximations are permissible. Thus, for example, a set of equations derived

for purposes of determining an accurate trajectory would differ considerably from

those intended to be useful mainly for loads studies. The differences, of course, are

due solely to the permissible simplifications.

While certain approximations for specific purposes are immediately evident,

it must be recognized that in general, the manipulation of the equations to simplified

form is often an art rather than a science, based heavily on experience and engineer-

ing judgement. In any event, a firm theoretical foundation is basic, and this is the

aim of the present exposition. In this respect, various elements uniquely germane to

trajectory simulation studies are considered in detail. These include pertinent co-

ordinate systems and transformation matrices, their relationship to the guidance and

control problem, and the assumptions that characterize the final results.



The emphasis in this monograph is on launch trajectories rather than orbital

mechanics. Thus the equations developed in Ref. 8 before perturbation techniques

are applied are exactly equivalent to the fundamental equations developed here.



2. STATE OF THE ART

The modern development of the equations that govern the motion of a space

vehicle reflects both the needs of the aerospace industry and the facilities available

for processing these equations. On the theoretical side, other than the various per-

turbation techniques of celestial mechanics, there is little that can be properly de-

scribed as advances in the state of the art. (We exclude, of course, relativity effects,

which are not expected to be of design significance in the foreseeable future. )

The development of trajectory equations has its foundation in the classical

theories of celestial mechanics(11) and the equations of rigid-body motion. Various

texts in recent years have adapted the classical methods to the needs of modern space

vehicle guidance and control. (13, 14)

The two fundamental factors that have affected the development of trajectory

equations are: the availability of high-speed computing equipment and the refinements

in values of geophysical and astrodynamical constants. Consequently, where high pre-

cision is required, the means of achieving it has been made available. However, an

economical and efficient use of computing equipment requires a harmonious blend of

satisfactory accuracy for the specific mission and permissible approximations in the

equations of motion. Computer storage and solution time are limited.

The result is that a bewildering variety of specialized computer programs

is available in the aerospace industry. Each is generally tailored to specific missions

or vehicles and is based on particular forms of the equations of motion. (6, 7, 9, 10)

What may therefore be properly called state of the art in trajectory equations

is merely a reflection of refinements in basic data and ingenuity in programming com-

puters efficiently.

Among the factors that demand attention in this respect are:

a. Rational choice of reference frames.

b. Determination of those effects that are significant and those that are negligible

for the particular problem at hand.

c. Adaptability for solution in real time when integrated with guidance.

d. Computer storage and solution time constraints.

e. Flexibility and ease of modifying computer program as required.



llior(ler lo achieve a fuller comprehension of these factors, one must I,e

f:m_ili:lr with the primary elements th:Lt are taken into account in these general for-

mulations. The re:tuner ill which these are comprehensively integrated is the subject

of lhis monograph. In keeping with the general theme of this series, long, detailed

special eases are :woided, although examples are included to enhance comprehension.

The overall objective is to provide an engineering foundation suitable for design

application in a wide variety of specialized cases.
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3. RECOMMENDED PROCEDURES

The vehicle equations of motion are most readily derived with respect to an

inertial reference frame. Furthermore, for convenience and ease of manipulation,

such quantities as velocity, acceleration, and applied forces are expressed in body

axis coordinates.

To yield meaningful results, the accelerations and velocities computed in the

body coordinate system must be related to a fixed point on the surface of the earth.

Furthermore, since various measures of linear and angular motion are usually derived

"from the instrumentation on an inertial platform, this coordinate system must also be

related to the others.

Accordingly, the various coordinate systems to be used are described first,

together with the appropriate transformation matrices. This is followed by a detailed

discussion of the equations of motion and the manner in which the coordinate trans-

formation matrices are used to obtain results relative to particular reference frames.

3.1 COORDINATE TRANSFORMATIONS

The coordinate systems needed to fulfill the requirements of guidance, con-

trol, and loads analysis are listed below.

a. Geocentric Inertial

b. Earth-Fixed Launch Site

c. Earth-Centered, Launch-Derived

d. Launch Vehicle Platform-Accelerometer

e. Launch Vehicle Navigation

f. Body-Fixed

SI

S L

S E

Sp

SN

SB

These are based on standards adopted by the NASA Apollo project office. (1) For pur-

poses of brevity, each coordinate system is denoted by the symbol S with an appropriate

subscript. In the ensuing discussion, this will be used to denote either the coordinate

system itself or a vector with components in this system; whichever is meant will be

clear from the context. A complete description of these coordinate systems is con-

tained in Figs. 1 through 6.

The use of a body axis system permits the usual description of angular

rotation about the XB, YB' and Z B axes in terms of roll, pitch, and yaw respec-
tively. The launch vehicle platform accelerometer system is used for vehicle attitude



MEAN VERNAL

EQUINOX

Z I

EARTH MEAN

ROTATIONAL AXIS

MEAN EQUATOR

YI

TYPE:

ORIGIN:

Nonrotating, earth-referenced.

The center of the earth.

ORIENTATION AND LABELING:

The Z I axis is directed along the earth mean

rotational axis, positive north.

The X I axis is directed toward the mean vernal

equinox.

The YI axis completes a standard right-handed

system.

The epoch is the nearest beginning of a

Bessellan year.

Figure 1. Geocentric Inertial Coordinate System



EARTHTRUE

ROTATIONAL AXIS

LAUNCH

ENCE ELLIPSOID
NORMAL

AIMING AZIMUTH

TRUE

LAUNCH S_E

TANGENT PLANE

TYPE:

ORION:

Rotating, earth-referenced.

At the intersection of the reference ellipsoid

and the normal to it which passes through the
launch site.

ORIENTATION AND LABELING:

The launch site tangent plane contains the site

and is perpendicular to the reference ellipsoid

normal which passes through the launch site.

The X L axis coincides with the reference ellipsoid

normal passing through the site, positive upward.

The Z L axis is parallel to the earth-fixed aiming

azimuth, defined at guidance reference release

time, and is positive downrange.

The YL axis completes a standard right-handed system.

The YL-ZL plane is the launch site tangent plane.

Figure 2. Earth-Fixed Launch Site Coordinate System



EARTHTRUE
ROTATIONALAXIS

+

EAR_

LAUNCH-DERIVED

X L

REFERENCE ELLIPSOID
NORMAL

EARTH-FIXED

LAUNCH SITE

TRUE EQUATOR

H SITE TANGENT
PLANE

TYPE: Rotating, earth-referenced.

ORIGIN: The center of the earth.

ORIENTATION AND LABELING:

The launch site tangent plane contains the site and

is perpendicular to the reference ellipsoid normal

which passes through the launch site.

The X E axis is parallel to the reference ellipsoid

normal passing through the launch site and is

positive toward the launch site.

The Z E axls is parallel to, and positive in the same

direction as, the earth-flxed aiming azimuth.

The YE axis completes a standard right-handed system.

The YE-ZE plane is parallel to the launch site tangent

plane.

This system is translatable with the earth-fixed

launch site system.

Figure 3. Earth-Centered, Launch-Derived Coordinate System



Zp _Zp

TYPE :

ORIGIN:

Nonrotating, vehicle-referenced.

The intersection of the primary axes of

the accelerometer.

ORIENTATION AND LABELING:

The Xp axis is parallel to the reference ellipsoid

normal through the launch site, positive upward.

The Zp axis is parallel to the aiming azimuth,

positive downrange.

The Yp axis completes a standard right-handed system.

This system is translatable with the earth-fixed launch

site system at guidance reference release time.

Figure 4. Launch Vehicle Platform-Accelerometer

Coordinate System



EARTH'SAXISOF ROTATIONXN

PLATFORM-ACC E LEROMET ER

SYSTEM TRANSLATED TO

Xp

yp Zp

SYSTEM

YN ZN

TYPE:

ORIGIN:

Nonrotating, earth-referenced.

The center of the earth.

ORIENTATION AND LABELING:

This system is translatable from the launch vehicle

platform-accelerometer system at guidance reference

release for the launch vehicle.

The X N axis is parallel to the Xp axis of the launch

vehicle platform-accelerometer system.

The YN axis is parallel to the Yp axis of the launch

vehicle platform-accelerometer system.

The Z N axis completes a standard right-handed system.

Figure 5. Launch Vehicle Navigation Coordinate System

10



ZB

YB

TYPE:

ORIGIN:

Rotating, vehicle-referenced.

A fixed point on the longitudinal axis.

ORIENTATION AND LABELING:

The X B axis lies along the longitudinal axis of

the vehicle, positive in the nominal direction

of positive thrust acceleration.

The YB axis is directed along the "right wing."

The Z B axis completes a standard right-handed

system.

Figure 6. Body-Fixed Coordinate System
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reference andto definethe orientation of the accelerometers. Gimbal angles relate

this system to the body axis system, such that the space-fixed orientation of the ve-

hicle is determined. The earth-fixed launch-site system is used primarily to relate

the motion of the vehicle with respect to the earth's surface; this is generally done by

radar tracking. It is also used for ground-based radio guidance. The geocentric in-

ertial system is a convenient reference for orbital and lunar trajectories. In con-

junction with the earth-centered launch-derived system, orbital trajectories may be

described with reference to the earth where the earth's rotation is taken into account.

In the transformation matrices derived in this section, we will be concerned

only with relative angular orientation of one reference frame with respect to another.

As will be shown later, this leads to an elegant and concise means of representing the

coordinate transformations from one reference frame to another, even with several

intermediate transformations involved. As a result of this restriction, the transfor-

mation matrices developed here are valid only for transforming the vector components

in one reference frame into components parallel to the principal axes of another refer-

ence frame. When the origins of the two frames considered are coincident, this is

the complete transformation matrix.

Since the transformation matrices will be used here only under the restriction

noted above, we can make use of the transformation matrix properties developed at

the end of this section.

We now consider these matrix transformations in detail.

Geocentric Inertial to Earth-Fixed Launch Site. Referring to Fig. 7 the orientation

of SI may be related to S L by a sequence of rotations expressed symbolically as

! e

XI YI ZI

I n

XL i I ZII -(A3+90°) 1

XL YL ZL

In words, SI is rotated about Z I by a positive* amount A 1, giving the new
I I

orientation (X I , YI, ZI)" This is followed by a negative rotation about Y{ by the

*Positive is understood to mean in the sense of the right-hand rule.

12



XL

Z i/

I

Z I

I

YL ] YI

Z L

A 2

I

X 1

Figure 7. Geocentric Inertial to Earth-Fixed Launch Site

Coordinate Transformation
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amount A 2, resulting in the orientation (XL, YI', ZI')" A further rotation about X L in

the negative direction by the amount (A3+90 ° ) gives the final orientation of SL. The
reason for the rotation of (90°+A3) is that it is desirable to deal with angles which are

nominally less than 90° . Since vehicles are generally launched in a southeasterly

direction, it is necessary to specify the rotation shown in order for the Z L axis to
coincide with the downrange direction. Depending on the specific mission, however,

any convenient rotation sequence may be specified.

The components of a vector in the S L frame are related to the components in

the SI frame by

SL = AL:I (1)

where thetransform_ion matr_ is*

CAlCA 2

ALI= cA3sA2cA 1 + sA3sA 1

sA3sA2cA 1 -cA3sA 1

cA2sA 1

cA3sA2sA 1 - sA3cA 1

sA3sA2sA 1 + cA3cA 1

sA 2

-cA3cA 2

-sA3cA 2

Note that A 1 includes the effect of the earth's rotation, as follows.

AI = A(0) +i net

where __AQ0) is the latitude of the launch site at time of launch and f_E is the earth's
angular velocity.

Launch Vehicle Platform-Accelerometer to Body-Fixed. For this case we have

Xp Zp

t I

p Yp Zp

t #

_ Yp Zp

% YB ZB

(2)

*For brevity, we write sA 1, cA 1for sin A 1cos A 1, etc.

14



Vector components are related by

§B = ABpSp

where the transformation matrix is

vectors

ABp= s_0sec$- c_s_ I

_0sec$+s_os$ I

cosy

s_o se s¢ + c_0 c¢

c_0s8 s$ - s_0c¢

s_c

c_ce]

Denoting the angular velocity of S B by _, we find by direct resolution of

B

°OyB

u_ZB

= p : ¢_-_sin8

- q = 0 cos(p+ _cosO sin_0

=- r = _cosScos_O-_sincp

(3)

(4)

(5)

Or, in inverse form

= sec 0 (r cos ¢p + q sin cp)

(6)

= qcoscp-r sin_0

= p+tane(r cos_0+qsin_)

When 8 -. + 90 ° , the well known phenomenon of "gimbal lock" occurs. There

are various ways of resolving this problem, (2,3) which, however, is beyond the scope

of the present discussion.

Geocentric Inertial to Launch Vehicle Navigation. We will assume that at guidance

reference release (which may be taken as the instant of launch), the system Sp is

related to SI by the rotation sequence

15



I

XIP- (0 3 + 9 0°)

Xp

I

YI

-G

YI t

Yp

ZI

#

ZI

J
Zp

so that

Sp = ApIS I (7)

The transformation matrix Api is identical to ALI except that* (t_l, t_2, G3) replace

(A 1, A 2, A3). Furthermore, since by definition Sp is translatable from SN at
guidance reference release, we have

ApI = ANI (8)

Local Geocentric Coordinate System. To describe the motion of the vehicle relative to

the planet, it is convenient to define one more coordinate system, SG, as shown in

Fig. 8. The origin of SG is on the surface of the planet and X G is directed along a

radial line which passes through the origin of SB; being positive in the upward direc-

tion, it is related to SI via the sequence

XI YI ZI

I I

YI ZI

XG YI' ii

 ,0o l iI
XG YG ZG

*Generally, at guidance reference release, Sp

G1 = A_ 0)' G2 = A2' G3 = A3"

16

is translatable with S L. In this case,



X G

Z I

G

X I

YG

I

XI !

TYPE: Rotating, earth-referenced.

ORIGIN: On the earth's surface.

ORIENTATION AND LABELING:

The X G axis is along a radial line from the center
of the earth to the origin of the body axis system.

The Z G axis points in the direction of due east.

The YG axis completes a standard right-handed

system.

Figure 8. Local Geocentric Coordinate System
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Vector components are related by

SG = AGISI (9)

where the transformation matrix is

AGI =

c r 1 c r 2 s r 1 c r 2 s F;

cr 1 sr' 2 sr 1 sr 2 -cr 2

-s r 1 c r 1 0_

Properties of the Transformation Matrices

A generic transformation matrix, AMN, satisfies the relation

-1 T

AMN = AMN

(10)

(11)

This follows from the orthogonality of the reference frame. * Now

SM =AMNSN

for any reference frames M and N. Therefore, using Eq. (11),

T SMSN = AMN

By defining

T

ANM = AMN

the various transformations of components of a vector may be expressed in a very

systematic manner. Thus, for example,

§p = ApBS B

SI = AIp ApB SB

SL = ALIAIp ApBSB

*A proof is available in any standard text on matrices.

(12)

18



etc. The following definitions are therefore meaningful and useful:

AIB = AIp ApB

ALB = ALI AIB

ALp = ALI Aip

ABG = ABp ApI AIG

Many other transformation matrices may be similarly defined as needed.

3.2 EQUATIONS OF MOTION I,q INERTIAL FRAME

This section is concerned with the derivation of the equations of motion that

describe the powered-flight and coast-phase trajectory of a launch vehicle, leading

either to surface impact or low earth orbit. The analysis is very general and takes

account of such factors as jet damping, motion of the mass center relative to the ve-

hicle, rotation of the earth, eccentric c.g., and nonspherical earth.

The equations of motion are most readily derived relative to an inertial frame.

Using the results of the previous section, we will then relate the motion to earth-

referenced and other coordinate systems as required.

The derivation of the equations of motion of a launch vehicle is complicated

by the fact that the vehicle has variable mass and moment of inertia and also relative

motion between various masses within the vehicle and the origin of the body axis sys-

tem. In the latter category are included such factors as fuel sloshing, rocket engine

rotation and vehicle flexibility. To take account of all these elements of the problem,

we consider the very general configuration shown in Fig. 9. The inertial reference

frame is (XI, YI, ZI)' and the body axis frame is denoted by (XB, YB, ZB); the origin
of the latter is located at some fixed point on the body. It is assumed that the body

under consideration is bounded by a fixed closed surface, and variation of mass occurs

through particles leaving the system across this boundary. The angular velocity of

the body frame with respect to the inertial reference is denoted by _.

If now m i is a generic mass particle, the total moment about the origin of

the body frame is

= _ Pi × d -" (13)o i _ (mi Ri)

The time rate of change of the momentum, m i R i, is given by
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Figure 9. Configuration of Body of Variable Mass Relative to

Inertial Reference

d • 0ow

d_ (mi Ri) = m. R. - rh. _.I I 1 I

where the effect of variation in mass is accounted for (see Appendix A).

From Fig. 9

Taking the derivative with respect to time,

R.I = Ro+Pi +_ xJSi

A further differentiation yields

oo o•

R =R
1 0 +_ x Pi + o_x (_ x _i ) + ;di+ 2a_ x _i

(14)

(15)

(16)
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Noting that i_. Pi m.l = mPc'- we find after substituting Eqs. (14) and (16) into Eq. (13)

+ + × ×

(17)

By using the relations for the inertia dyadic developed in Appendix B, together with

some standard formulas for vector products, Eq. (17) reduces to

-- "" d
M = mp x R +-_,(I. oS)-_pio c o _,_ i x ,h.(_5x 15i)-i_Si x ,h.e.1 " 1 1

i) _i x m.p. (18)+ _5 x _ 05 x mi_5 + _5i ii i • I

The first term on the right-hand side of this equation represents the effect of the sys-

tem center of mass being displaced from the origin of the body axis system. The

second term corresponds to the usual rate of change of angular momentum. This

takes account of mass variation as well as the effect of mass motion within the sys-

tem. The third term represents the so-called "jet damping, " while the fourth is due

to thrust deflection. The last two terms represent relative motion of particles within

the system due to fuel sloshing and bending.

The equation for linear acceleration follows directly from Newton's law,

using Eq. (16); viz.,

= + 2o_ x _ + -_I_.._.
0

(19)

By writing this in the form

mp =1_- mR
C O

+2m (_x pc) +m (_ x _c )

+mS_ x (_ X_c) l +_ rn. 5.i 1 1

we may identify the terms as follows:

1_ - applied force

d6"

mR
O

- d'Alembert force
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m

2m (_X pc) - Coriolis force

m (_0XPc) - Eulerforce

m_ox (GaX_c )

E I_11_t
1

- centrifugal force

- thrust force due to variation in mass

Equations (18) and (19) completely describe the motion of the system with

respect to an inertial reference when the motion of the internal moving parts is pre-

scribed. In the general case, the relative motion of internal parts may be due to pro-

pellers (in the case of aircraft), flywheel controllers (in orbiting satellites), or rocket

engine deflection (in launch vehicles). In all of the aforementioned cases, this relative

motion is a given function of time, and no further equations (other than kinematic con-

straints) are necessary to define the motion. However, sloshing pendulums or bend-

ing deflections constitute additional degrees of freedom and must be described by

separate equations of motion. These effects, however, are of negligible importance

in the trajectory problem and will therefore be neglected. They are nevertheless

significant in describing the vehicle short-period dynamics and are considered in de-
tail in Ref. 8.

Consider now the thrust term, E _. _.. If this summation is performed over a
typical launch vehicle, we would have i 1 1

E_._. = _ =
i I 1 T

- TX B

*_B

F_

-Ts +To

T 5
c p

(20)

Here we take note of the fact that for some of the rocket engines, ci is always
parallel to the XB axis, while in pitch and yaw, this may be deflected by (small) angles,

5p and 5y respectively (see Fig. 10). Similarly, the thrust deflection term, Y. _ ×
i

rni ci' in Eq. (18) may be expressed as

_i_ i x r_.1_'I = MT =

l_ TX I

MTYI_

MTZI;

- rT £ 8
r r

= T L5
C C p

T _5
c c y

(21)
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Figure 10. Thrust Configuration
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For purposes of writing the trajectory equations, the terms in Eqs. (18) and

(19) that are due to bending, sloshing, and jet damping are negligibly small and will

be neglected. Since the location of the origin of the body axis system is arbitrary,

vector Pc is in general not a small quantity. However, for most large booster ve-

hicles, the motion of the mass center relative to a fixed point on the body is small,

and so is the rotation vector, _. Consequently, terms involving products of _, _,

and _ will be dropped. In this case, Eqs. (18) and (19) reduce to

.o

+ T = mRo+mU_ x c (22)

i_I T A5c _*I_Io + - dtd ([. _)+m XO_o+Pc ) (23)

The external forces and moments in Eqs. (22) and (23) are due to aerodynamics

and gravity; we express these as follows:

g

o A g

Now let R = U. Then in expanded form Eqs. (22) and (23) may be written as
O

g

I_IA+I_I +fiT = i''_+_" _+_x(i" _)+mPcg

These two equations describe the motion of the vehicle with respect to an in-

ertial reference. The motion with respect to various frames of reference may be

obtained by using the transformation matrices developed in Sec. 3.1. We now consider

the explicit form of the external forces and moments applied to the vehicle.

3.3 FORCES AND MOMENTS

The forces and moments acting on the vehicle stem from three sources:

thrust, gravity, and aerodynamics. We consider these in turn.

3.3.1 Thrust

Expressions for the forces and moments due to thrust, in the case of swivel-

ling rocket engines, have already been derived in Sec. 3.2. These are
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_T

MT =

-- r_v

A xla_

- r_ r-n

II_Ty -

L--ran r-J

-Ts + T-c

-= -T 6
c y

T 6
c p

-T _6-
r r r

-- T _6
c c p

T _6
c c y

(26)

(27)

3.3.2 Gravity

For purposes of accurate guidance and navigation, it is necessary to account

for the nonspherieal shape of the earth. In computing the force of gravity on a body

which is above the earth's surface, the latter is assumed to be an ellipsoid of revolu-

tion with an associated gravitational potential.(4) The components of the gravity vector

in the local geocentric system are* (see Fig. 11):

R 2 4 j2P3 (Re_ _ e + e

gx G R "2 +JlP2 + 5 \_/ Roo
O

I2 RIR--J 3 J2P6 (R_--o_
_ _ JiP5 e eR-2

O

2J3P7 Re 4

(28)

(29)

gZG = 0

where

1016= 1.407698 x ft3/sec 2

R = 20.925631 x 106 ft
e

-6
J = 1623.41 x 10

1

*Cf. Ref. 15
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-6

J2 = 6.04 × lO

-6

J3 = 6.37 × 10

2

P2 = 1 - 3 sin F 2

P3 = 3 sin r 2 - 5 sin 3 r 2

P4 = 3 - 30 sin 2 r 2 + 35 sin 4 F 2

P5 = sinr 2cos r 2

P6 = cos r 2(I- 5sin 2 r 2)

2

P7 = sinF 2cos F 2(7 sin I"2- 3)

In the body axis system, the gravity components become

(30)

Using Fig. 12, the forces and moments due to gravity, expressed in body

axis coordinates, are obtained as

F
g

1-Fg%
-- m _r

= FgYB -B

F g.

gZB _--_

(31)
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xB

gxB

Figure 12. Gravity Components in Body Axis System

m

M
g

g_.

.-_ _o
_v

*'_:r 7

b_Ti

- m

gZBYcg - gY_ cg

g z -g x
XB cg Z B cg

_ B cg

(32)

3.3.3 Aerodynamics

We write the components of the aerodynamic force and moment vectors re-

lative to the body axis system as follows.

_A

FAYB]

- AZ_j I

(33)
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MAZB

where, in the usual way,

FAX B

FAy B

1 V 2
= _ P A 1 C A

1 V 2
= -_p A2C Y

1 V 2

FAZ B = -_ P A 3 C N

MAXB 1 V 2 C£= _p A4£ 1

MAy B

1 V 2
= _ P A5 £2 CN

MAZB 1 V 2 Cy= _p A6£ 3

V is the airspeed given by Eq. (52), and the $i and A i are reference lengths

and areas respectively.

Each of the aerodynamic coefficients, Ck, may be expressed in the form*

Ck = C). +C). cx + _ £v _ • Lv £vo cx_ +iVcx&_ +_cx_ h +_Cxp p

_Vc _Vc (c _v _i)+ 2"V ),q q + _ ).r r + Z)i )-5i 5i + _ C)'5i

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

*p, q, and r are defined by Eq. (5).
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where ), stands for A, Y, N, or _, and C), o represents the value of CA in the steady
state, while

b CX

CX_ _ --_O_ , etc.

Also, the subscript, v, only equals 1, 2, or 3, corresponding to).equals $, N, or Y.

The quantitiesof 6iaccount for control surface deflections. In the quasflineartheory,

coefficientsC)._, C)._,etc. are assumed independent ofa, _, _, _, p, q, r, 6i, and

5i. The truncation ofthe Taylor expansion (41)implies thatthe variables shown are

small quantities.

Using the general form of the aerodynamic forces and moments given by Eqs.

(35) - (40), any degree of refinement (including nonlinear and cross-coupling terms)

may be incorporated, depending on the specific vehicle and mission. We consider only
the simplest case of a large booster vehicle having a high degree of axial symmetry

and no appreciable aerodynamic lift surfaces. In this case, the only significant

stability derivatives are C N_ and C=.o, while the only aerodynamic force in the X Btz xp
direction is the drag, which is assumed independent of angle of attack. Consequently,
Eqs. (35) - (40) reduce to

1 V 2
2 p A 1 CD (42)FAX B -

FAy B = L_ _ (43)

FAZ B = -Lc_a (44)

MAX _ 0 (45)
B

MA = L £ O_ (46)
YB o_ o_

MAZ B = L_ (47)

In accordance with common practice, we have assumed that the drag force

acts in the negative X B direction and have written the drag coefficient CD to highlight
this convention. It is also common practice to assume that the normal force in the

pitch plane acts in the negative Z B direction, which accounts for the negative sign in
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Eq. (44). Also, £0_ and _ represent the distances (measured from the origin of SB)
to the centers of pressure in the pitch and yaw planes. Finally, we note that*

L 5 CN (_)

i V2A5L = _p j _

0

(48)

L 5 Cy (_)

i V 2 A 6 d_
Lj8 = _p j 5_

0

(49)

Evaluation of Eqs. (43) - (47) requires the determination of the angles of

attack in pitch and yaw. This is done as follows. Expressing the components of the

wind velocity vector in the local geocentric system, we have**

J

= W v

J

W
ZG

m .

-W N

W E +Ro DE c°sl_2

(50)

The velocity of the origin of the body axis system is (in body axis coordinates)

1_ = KJ =
0

_T

_w,r
A.

UVu_.._.33J -

-u1
v1

_W

(51)

Consequently, the airspeed is given by

*See See. 3.3.5 of Ref. 8.

**Note that R o mE cos r 2 is the component parallel to the Z G axis of the vector product

5EX o.
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U 0 u t

V

W

-A
BG - W N

W E + R ° fiE cos r 2

I
---- V

i
W

(52)

The required angles of attack are

= tan _---_-]

(53)

(54)

where

V = [(ut) 2 + (v') 2 + (w')2] 1/2 (55)

3.4 COMPLETE EQUATIONS OF MOTION

A complete description of the motion of the vehicle is contained in Eqs. (24)
and (25), which are repeated here for convenience.

(56)

I_IA+IVI +i_I = I'._O+T. [o+_X(_._)+m_cg T

The components of the forces and moments relative to body axes have been

developed in the preceding section. Thus the motion of the vehicle relative to an in-

ertial reference is completely determined.

In order to emphasize fundamental principles, we have thus far resisted the

temptation to expand the vector matrix quantities. Also, the precise manner in which

the equations are expanded depends on a stipulation of the parameters of interest and

the degree of accuracy required. One may, for example, be concerned chiefly with

determining an accurate trajectory relative to the earthts surface. On the other hand,

one may be primarily interested in calculating loads on the vehicle as it passes through
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the atmosphere. Or, for purposes of ascertaining orbital parameters, one may be

interested mainly in values at burnout.

Of course, by working with the complete system, any or all of these ql_antities

are obtainable by applying the coordinate transformation matrices where required.

For specialized cases, certain formulations are more efficient, and various simplifi-

cations may be introduced.

However, in order to exhibit the computational sequence required for com-

puter simulation, we will now reduce the equations of motion to scalar form, indicat-

ing the means whereby various quantities of interest are determined.

From Eqs. (56), (51), (44), (43), (42), (31), (30), (26), and (5), we have

m

m m

• " r
u +qw -rv + Zcgq - Ycg

v +ru-pw +x - z
cg cg

_v + pv - qu + Ycg "_ - Xcg q
m

-- 1 V 2 --
-_-P A 1 CD

L_

-L _

gxGi TS +Tc--j

+mABG gYGI + -TcSy[l

0 T
e Pi

(58)

Also, from Eqe. (57), (47), (46), (45), (32), and (27),
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n

Ixx_)+Ixx p +(Izz-Iyy) qr +Ycg(W +pv-qu +Zcg ) - Zcg (v +ru-pw +Ycg )

Iyyq+iyyq+(I - pr +zxx Izz) cg (u + qw - rv + Xcg ) - Xcg (v,' + pv - qu + Zcg )

I r+i r+(I - I) IXl+zz zz yy Xcg

o.

(v + ru - pw +_cg ) - Ycg (u + qw - rv +Xcg)_"

+m

n

gz B Ycg - gYB Zcg

gx B Zcg - gZB Xcg

gYB Xcg - gx B Ycg

m

T
r

+ T
C

T
C

m

5
r r

5
c p

5
c y

Here we have assumed that products of inertia are negligibly small and may be

discarded.

(59)

We have also (see Sec. 3.3.3)

i. , ,. (v') 2 (w,)211/2V= u) + +

D ..q

tl
U

I I
V

W/I

B --

U

= V --

w

ABG

0

-w N

WE + Ro f_E cos r 2
m

(60)

(61)

-1/w t ,

O( = tan I-_) (62)

-I v t

# --t.n (T) (63)

The velocity vector has components in the geocentric inertial system, which

are obtainable by
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m l

I
vi i

wL

= AIpApB vl

wl

(64)

Integrating this, we obtain the components of the vehicle position vector expressed in
geocentric inertial coordinates; viz.,

(uidt = RoX _ +C 1

._(v I d t Roy I + C2

fwidt RDZI + C 3

(65)

where the constants, Ci, depend on the initial conditions.
we find

I"
1

-1
= COS

i %x, _1"R 2 R 2t/
oX I + oy I )

With the help of Fig. 8,

(66)

I"2

-1
=tan

( R° ZI ]R 2+R 2_1/2{

oxI oYI/ J
(67)

Finally, we note that

1 E

while A2, A3, GI, G2, and G3 are known constants.

The foregoing equations are sufficient to describe the motion relative to an

inertial reference. To relate the trajectory to the earth's surface, some further

(68)
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' ZGI),transformations are required. We introducea coordinatesystem (XG', YG '
whichwe shall call SGt, whose origin coincides with the origin of SB and which is

t

translatable with S G. The angular velocity of SG is

2

a.J._

m m

_E sin 1_2

= -% cos r 2

0

m

(69)

Now

U =R +
0

The components of R
o

I%1
Ro --IVol

p

in the SG frame are denoted by

(70)

Since

O

r- .-q

IR
0

= l0
|
|

l_0..

#

in the SG frame,

m m

u G

V --

G

Eq. (70) reduces to

U

AGB v

W

m .

m m

0

0

cosr _

(71)

A flight path angle, _/, and an azimuth angle, a, are defined in Fig. 13. It
follows immediately that
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Figure 13. Definition of Flight Path and Azimuth Angles

I(u u
1

7 = sin-I
2 2"1/21 (72)

G2+VG +WG) ]

v°l1O" = sin (73)
--2 1/g

+ w G

For high-precision trajectories, it is necessary to relate the motion to a

surface in the shape of an oblate spheroid. The situation is depicted in Fig. 14, where

the line OP represents the position vector, Ro" We seek to determine the geodetic

altitude, AP, the geodetic latitude, I_G, and the flight path and azimuth angles ex-
pressed in geodetic coordinates. The available quantifies are the position vector, Ro,

and the geocentric latitude, r 2.

The equation for the surface in the meridian plane is given by

X 2 Z 2
--+--=1

2 2

REA REB

(74)
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Figure 14. Meridian Plane Through an Oblate Spheroid Earth

From the geometry of the ellipse, we have

= R__z__x

C

(75)

38



Also

OA - R G =
+ (76)

1_E = I_2 - r A

RE ( EB x+--'_ 2
REA REA

1/2

(77)

(78)

(79)

[ 2 2 2RoRGCOSl.,E] 1/2- H G = R + R G -
(80)

There is the additional relation

R ° cos r 2 - R A

HG = cos I_G
- R H

(81)

By substituting Eqs. (79) and (81) into Eq. (80), we obtain an equation for X in terms

of R o and I_2 . This equation is transcendental and must be solved by iterative methods °

Having X, the values for H G and I"G follow directly from Eqs. (75) and (81).

To express the flight path and azimuth angles in geodetic coordinates, we

define the local geodetic coordinate system, S C, in the manner shown in Fig. 15.

coordinate transformation from SG to S C is given by

The

SC = ACG SG
(82)
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G
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YG

where

Figure 15. Orientation of Local Geodetic Coordinate System

ACG
_cos (r G - r2) -sin (r G - rg) I= I TM (FGo - F2) cos (F G0- F2)

Because (r G - I"2) is a very small angle,* it is permissible to write

ACG

i -(FG - r2) o

= - I_2) 1

0 0

*The maximum value of (I"G - r2) on earth is approximately 10 minutes of arc.

4O

(83)



Consequently, the components of velocity in the local geodetic system are given by

u C u G

v C = ACG v G

Wc w_Q

(84)

The flight path and azimuth angles are then expressed in the local geodetic system by

and

[(u: u)]
-1 C

_C = sin 2 2 1/2 (85)

+ v C + w C

v)]
-1 C

a C = sin {86)
2 2 1/2

C +Wc

The set of equations (58) through 86) affords a complete description of the

motion with respect to both inertial and planet-referenced coordinate systems. The

forcing or control functions are the rocket angle deflections, 6p and 6y, in pitch and
yaw, while 6 r represents the driving signal for roll moment. The manner of specify-

ing the control functions is dependent on the mission and the type of guidance used. An

extensive treatment of this subject is beyond the scope of the present monograph.

However, to exhibit the essential features of a complete guidance/control simulation,

we will consider one special case in detail in the next section.

3.5 TRAJECTORY EQUATIONS DURING LAUNCH

One important aspect of the design of launch vehicle control systems is the

assurance that bending loads imposed on the vehicle by atmospheric disturbances do

not exceed permissible values. Since we are concerned with dynamic rather than

static effects, it is necessary to determine relevant parameters by solving the equa-

tions of motion. The results of the last section are directly applicable with, however,

some crucial simplifications. For present purposes, the assumption of a spherical,

nonrotating earth is eminently satisfactory. Also, since the altitudes will be relatively

small, the gravity acceleration may be assumed constant with negligible error.

Furthermore, it is convenient to adopt the Launch Vehicle Navigation system, SN, as
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the inertial reference. If guidance reference release is assumed to be the instant of

launch, *

SN = Sp = SL = SE

The results of the previous sections may then be used directly with A 1 = A 2 ----

A 3 = 0. Within the region in which the equations are valid, the range will be assumed

small such that r 1 and I"2 may be treated as small angles. Note that since the inertial

reference is assumed to be parallel with the launch site, I' 1 and I"2 measure displace-
ments relative to the launch site.

The following additional assumptions characterize the present analysis:

a. _b and _ are small, e is not necessarily small.

b. p, q, r, and their time derivatives are small.

c. v, w, and their time derivatives are small, u is not necessarily small. How-

ever, u is assumed small.

d. Finally, because the c.g. eccentricity is generally not appreciable, Ycg and Zcg
may be assumed to be small, while Xcg is not in general a small quantity since
no stipulation has been made concerning the location of the origin of the body

axes relative to the c. g° along the longitudinal axis. However, the time deri-

vatives of all these quantities are assumed small.

As a result of these assumptions, the transformation matrices given by Eqs.

(2), (10), and (4) reduce to

E°ALI = 0

1

1

AGI = I"2

.I"
1

j
r

1

0

(87)
= ApI

a

I"
2

1 0

(88)

cO ¢ce -sO

AB1 a = s0-_) 1 cpce

L sO ( se - ee_J

(89)

*The equal sign for the coordinate reference frames implies that they are translatable.
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Now

A
BG ABp ApI AIG

c8

_osO -_)

sO

_bc0

1

(_ sO -_)

_c0

cO

n a

1 0 0

0 0 -1

0 1 0

m

1

1"1

1"
2

F
2

0

-1"
2

-1"
1

1

0

And

ABG

(cO -F 1 sO)

= ((as0 -_ - F2)

(sO -F 1 cO)

F
2

r 2

F
2

cO

sO

-(sO +F 1 cO)

_e0

(c0-F sO)
1

(90)

AIB = /kip ApB

n

1 0 0

0 0 1

0 -1 0

B

cO

_ce

-sO

A

_-0 (esO -_ )

= -sO _ce

_c0 -1

Therefore, from Eq. (30)

gXB = -g (cos0 -F 1 sin0)

gYB = -g ((p sin0-@ -r2)

gz = -g (sin0 +F lcosS)
B

(_se -_)

1

_cO

cO

-(_ sO -

sO

($sO -_)

cO

(91)

(92)

(93)

(94)
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Substituting in Eqs. (58) and (59) and expanding, we obtain, after dropping
higher-order terms,

where

mu = T +T 1 V 2
s c - _ p A 1 CD - mg (cos 0 - rI sin 0 )

m(v+ru +Xcgr ) = -Tc6y+LB_-mg(_sin0-_ -r2)

o

m (w-qU-Xcgq) = Tc6p- Lc_ct-mg(sinO+F lcoso )

IxxP+Ixx p = TrLr 6r -mgYcg sin0

I q+I q-x (v_-qU+Zxg) = T L 6 +L LYY yy cg c c p _ _

- mg I(Zcg - rl Xcg) cos 0 - Xcg sin 01

Izzr+izzr+Xcg(V+rU+Vcg)_ = TcLc6y+L_L_

- mglXcg¢) sin0- Ycg cos0 -Xcg (_+r2) 1

L bCN(_)

L =_pV2B _0_ dL

L

L_ = IpV2B/ _CN(L) dL
0

From Eq. 6 we have

= r sec O

_ =p+rtan0

(95)

(96)

(97)

(98)

(99)

(100)

(i01)

(102)

(103)
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Also, from Eq. 52,

u' = u +r 2 W N cos e + (W E + R ° _E ) (sin 0 +r 1 cos e)

' = +F2WN (WE +RoCE )_ cos 8V V

wl = w +r 2W Nsin8 - (WE +R oDE) (cose-I_ 1 sine)

and

a =tan \V/

-1(_' /
_=tan _V/

1/2

v --[(u')2+(v')2+(,,,1)21

(104)

(lO5)

(lO6)

(107)

(lOS)

(109)

From Eqs. (64) through (67}

v I

w I

= ucosO+v($sinO-¢)+wsin8

= -usinO+vcpcosO+wcos8

= -u_cosO-v-w(_sin8-_)

(110)

(111)

(::2)

fu Idt = RoX I +C1

(113)

vidt = RoYi+ C 2

(114)

dt = RoZ I + C 3

(115)
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r
1

r 2

-1
= cos

-1
=tan

R 2 2\1/2[
°xl+R°YI 

IR R°ZI "
2\1/2l

°X_ + R°YI ) J

(116)

(117)

The altitude above the earth's surface is given by

= [R 2 R 2 2] 1/2
H G oXI + oYI +RozI] - R e

(118)

Finally, from Eqs. (71) through (73), we obtain the flight path and azimuth angles as

-1
(7 = sin

"--2 1/2"

+ w G

(120)

where

u G = u (cos O -r I sin 0) +w sin 0 (121)

v G = u r 2 cos 0 (122)

w G = -u (sin0 +r 1cos0) +w cosO -RODE (123)

The set of equations (95) through (123) describes the motion of the vehicle

once the functions 5v, 5v, 5r, and the wind profile are specified. More precisely,

5p, 5y, and 5r are deri_ed from attitude rate control signals _c' 0c' andq_c applied
to the vehicle autopflot, a typical schematic of which is shown in Fig. 16. It is the
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Figure 16. Pitch Attitude Control Channel

function of the guidance system to supply the input commands, _c, 0c, and_c, in order

that the particular mission objective be achieved. Some general aspects of the guidance

problem are discussed in Sec. 3.6.

It is perhaps pertinent to note that for purposes of analysis, the autopilot of

Fig. 16 may be viewed as either a rate or displacement type of feedback system. For

example, an equivalent schematic of Fig. 16 is shown in Fig. 16a, which highlights

attitude rather than attitude rate as the primary feedback. Whichever viewpoint is

taken is immaterial as far as the analytical aspects are concerned. The schematic of

Fig. 16 corresponds more closely to the actual hardware implementation.

KAK c H VEHICLE 0DYNAMICS vS+Kc

Figure 16a. Alternate Schematic of Autopilot of Figure 16
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Furthermore, for purposes of guidance, the attitude or attitude rate is not

the primary quantity of interest. In the guidance problem, the attitude rate input to

the autopilot is applied in order to control the vector displacement and velocity of the

vehicle. The factors influencing this problem are considered in Sec. 3.6.

The specification of the input commands and the wind velocities, W E and WN,
expressed as a function of attitude (i. e., the wind profile}, provides a complete input

format for purposes of solving the equations of motion. When this is done, various

quantities of interest may be calculated during the course of the solution.

For example, a parameter of fundamental importance is the bending moment

induced in the vehicle by atmospheric disturbances• This quantity may be simply

determined as follows If £. denotes the distance from the nose of the vehicle to sta-
• j

tion J, the moment at station j in the pitch plane is

[_CN (_i)

M.(p) = 1 V 2 _ _ _i)] ---5-_,j 2 p A5 i (_J

+mg (sin {} +1_ 1 cos S) - £i011

!
and in the yaw plane

- m" [v_1 -qu

(124)

M. (y) - --p V 2 A
j 6 i (£J - £i)

1 5CN (_i)

2 5_
/

+ mg (¢psin O -_ - 1"2)+ _i r]_

J

fl - mil v + ru

(125)

The summation is taken for all terms forward of station j; i.e., only those terms for

which (_j - £i) > 0.

Time histories of various significant parameters are available in the process

of solving the equations, e.g., _ (t), _ (t), 5p(t), etc. Additional quantities of interest
may be calculated as desired• For example, in Fig. 17, the range distances _C-_ and

B may be calculated from

t 2

= f V G dt

tI

(126)

t 2

_-fi'= R fe

t I

V G
--cos 7 dt
R
O

(127)
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where

1/2

VG= (u: + v: + w:)

V G D

C
B

A R

Figure 17. Determination of Range

3.6 GUIDANCE CONSIDERATIONS

It was pointed out in the previous section that the input format is complete

when the wind profile and attitude rate commands are specified. In order to discuss

the philosophy and motivation for the latter, we are led to consider the operation of a

guidance system, the essential elements of which are depicted in Fig. 18. The pitch

plane channel of the vehicle dynamics block in this figure is of the form shown in Fig.

16. However, for purposes of trajectory computation, all higher-order lags in the

autopilot are neglected. Thus, for example, in Fig. 16, the 8(s}/Sp(S) transfer func-

tion is taken as #c/S 2, and the effects of actuator dynamics are neglected. This is

permissible, since the trajectory (long-period) dynamics and the autopflot (short-

period} dynamics are separated by about a factor of five in the fundamental time
constant.

The guidance system must:

a. Measure the position and velocity of the vehicle.
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Figure 18. Elements of a Guidance System

b. Evaluate this information in the sense of determining whether the vehicle is "on

course" (e.g., by comparing with a reference trajectory).

c. Generate command or steering signals to correct for deviations.

These functions are performed by the Navigation, Computation, and Control elements

of the guidance system.

Essentially, the role of the Navigation facility is to determine the vehicle's

position and velocity in some specific frame of reference. Depending on the type of

guidance employed (radio or inertial), this may involve the use of inertial or radar

devices or a combination of the two.

The purpose of the Computation facility is to utilize the navigation data and

generate an error or status signal that is a measure of the vehicleVs present ability

to accomplish the desired mission. This is done by means of the "guidance equations."

The purpose of the Control function is to direct the flight path of the vehicle

in such a way that the error signal is driven to zero. This also includes the task of

generating the engine shutoff signal when a prescribed set of constraints is satisfied.

As previously noted, the guidance system is either radio or inertial, de-

pending on the physical hardware employed. Figs. 19 and 20 show typical configura-

tions for each. The radio guidance system was the earliest used on ballistic missiles

and space vehicles. It employs radar tracking stations that sense the slant range and
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the azimuth and elevation displacements and rates of the vehicle with respect to a

spherical coordinate system centered at the radar site. This data is then transmitted

to the guidance computer, which performs the various matrix transformations to make

the vehicle position and velocity information compatible with the guidance equations.

The form of the guidance equations is generally derived from the concept of a "required

velocity vector." The basic premise involved is that at each point in the powered flight

region, a required velocity vector

VR = VR (1_, t)

may be defined and computed such that the resulting free-flight trajectory will satisfy

the general guidance constraints. In most launch vehicles, there are three degrees

of control; i.e., pitch steering, yaw steering, and thrust termination. This means

that it is possible to satisfy four guidance constraints by causing three of the con-

straints to occur simultaneously with the natural occurrence of the fourth. More

guidance constraints can be satisfied if additional degrees of control are available;

i.e., variable magnitude thrust.

Typical guidance constraints are:

a. Burnout velocity magnitude.

b. Burnout velocity angle.

c. Altitude at burnout.

d. Burnout momentum.

e. Time of free flight.

The guidance equations are such that based on the required velocity, steering

signals are generated in the form of attitude rate commands in pitch and yaw. * How-

ever, because booster vehicles are comparatively fragile structures, violent maneu-

vering in regions of appreciable dynamic pressure are to be avoided. Consequently,

the steering of the vehicle is generally divided into two phases: atmospheric and

v acuum.

During the atmospheric phase, either of two approaches may be adopted. The

vehicle may be steered by means of some moderately well-behaved function that es-

sentially commands a given velocity profile. This may be accomplished, for example,

by nulling deviations in lateral velocity via yaw control and commanding a prescribed

functional relation between forward and normal velocity, using pitch control.

*The roll rate commands do not affect the trajectory.
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The second alternative involves flying the vehicle "open-loop" during the

atmospheric phase by programming the pitch and yaw attitude as a function of time.

This approach has been used extensively and will be described in some detail.

It is natural to seek to optimize some fundamental mission parameters, such

as payload weight, orbit altitude, or burnout velocity. However, the primary con-

straint during the atmospheric phase is the structural limitation of the vehicle, and

this consideration governs the final form of the pitch program.

If it is assumed that such parameters as thrust level, stage mass ratios, and

propellant specific impulse are fixed for a particular vehicle design, then attitude

control is the fundamental means of trajectory-shaping. Determining an optimum at-

titude vs. time program is, in principle, a simple application of variational calculus.

However, the complexity of the equations of motion during the atmospheric phase and

the problem constraints such as heating, aerodynamic loading, and thrust deflection

limits make a purely analytical approach unfeasible.

Since the primary constraint in the atmospheric portion of the trajectory is

the structural integrity of the vehicle, first attention is given to the maximum bending

loads. Without considering dynamic effects, the bending loads are a function of the

applied aerodynamic moment, which is balanced by an equivalent moment produced by

the thrust angle deflection. Since the applied aerodynamic moment is proportional to

angle of attack, the obvious solution is to employ a zero lift trajectory within the at-

mospheric portion of the trajectory. A zero lift (also called gravity turn) trajectory

is defined as that trajectory which results from keeping the thrust vector always

parallel to the velocity, starting from some nonzero, nonvertical initial velocity.

Physically, the vehicle is made to rise vertically off the launch pad; after a few sec-

onds, the vehicle's attitude and velocity vector are both rotated downward to begin the

gravity turn. Since the velocity vector of a real vehicle cannot be rotated instantane-

ously, the transition from vertical rise to gravity turn takes place over a finite length

of time. An angle of attack must necessarily exist during this time, but generally

this can be made to occur before the dynamic pressure is appreciable.

However, because of the presence of atmospheric winds, this approach must

be modified, since rapid changes in angle of attack can cause prohibitive inertial loads.

The approach generally adopted is that of generating a "pitch program" or pitch rate

vs. time* that will minimize the maximum aerodynamic moment encountered during

the atmospheric phase when all possible wind distributions are considered.

The first step in determining the pitch program is to obtain the pitch rate vs.

time history for a no-wind, zero-lift turn. This is generally accomplished by flight

simulation runs on a computer, with pitch control used to constrain the vehicle longi-

tudinal axis to be coincident with the velocity vector. Before this constraint is applied,

*The discussion applies also to the "yaw program."
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a short vertical rise period (about 15 seconds) is simulated, followed by a short

period of constant pitch down rate to produce initial rotation of the velocity vector

from its vertical orientation. As indicated in Fig. 21, it is necessary to accept a

negative angle of attack in pitch during this time. Pitch rate and duration are adjusted
to effect a smooth transition to the zero lift turn, with further adjustments made to

attain the desired end condition before transition to the closed-loop guidance phase.

Fig. 21 illustrates a typical convergence procedure.

Generally, a smooth pitch rate vs. time curve cannot be physically realized

by the autopflot, which, as a rule, is capable only of providing a limited number of

discrete time intervals during each of which a constant pitch rate signal is applied.

Thus, as indicated in Fig. 22, it is necessary to approximate the desired pitch rate

curve with a step pitch program having the required number of steps.

This first approximation to the pitch program must now be modified to take

account of atmospheric winds. Since applied aerodynamic moments are very nearly

proportional to both aerodynamic pressure, q, and angle of attack, _, it is sufficient

to determine the maximum product of these variables, _q, in order to check maximum

bending loads. Trajectory simulations are run with assumed winds aloft profiles, and

the resulting _q histories are examined to determine peak values, as shown in Fig. 23.

Various winds aloft conditions are assumed, which are normally chosen from statistical

analyses of weather data at the launch site. The _q peaks are adjusted by varying the

pitch rate history. The peak that results in the highest confidence level for not ex-

ceeding prescribed bending moments is then finalized. A more complete account of

this procedure is contained in '_tesponse Studies," which is part 10 of Vol. IH in the

present series.

A pitch program for a typical large booster vehicle is shown in Fig. 24. The

time histories of various parameters of interest are depicted in Figs. 25 through 41.

The precise definitions of the trajectory parameters are listed in Table 1.

The guidance elements for the exo atmospheric phase are shown in Fig. 19

for radio guidance and Fig. 20 for inertialguidance. As noted earlier, essentially

the same functionsare performed by both; the differencesarise mainly in the instru-

mentation employed and in how the information is processed.

Also, the basic guidance concept may be the same; the most commonly used

is the "required velocity" type. However, the specific implementation generally dif-

fers, due to the computation equipment available. In radio guidance systems where the

computing facilities are ground based, the guidance equations are of the so-called

"explicit" type, which requires essentially that the equations of motion be solved in

real time once or twice a second. Since this generally requires rather formidable

computing equipment, it is feasible only when the computation is performed on the

ground, as is normally the case for radio guidance systems. If the computer equip-

ment is to be airborne, as is generally true for all inertial-type guidance systems,
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the guidance equations must be in a form that minimizes the storage and computation

time burden on the computer. In this case, the guidance equations are based on per-

turbations about a nominal trajectory that employs delta quantities (deviations from

nominal); hence the name "delta" equations. For a detailed discussion of these guid-

ance philosophies, the reader is referred to the literature. (13)

The other obvious difference between radio and inertial systems is in the

sensing of vehicle position and velocity. It has already been noted that a radio system

normally measures slant range and the azimuth and elevation displacements and rates

in a spherical coordinate system centered at the radar site. The all-inertial system

uses a stable platform whose primary output is vehicle acceleration relative to in-

ertial space. More specifically, the accelerometers measure only nongravitational

forces; therefore a precise navigational facility must include provisions for taking ac-

count of gravitational acceleration. Total velocity and position in an inertial reference

is then determined by successive integrations, and in conjunction with suitable matrix

transformations, provides the basic information on the trajectory of the vehicle,

which forms the basis for generating the steering commands.

Since a detailed discussion of the analysis and implementation of guidance is

beyond the scope of the present monograph, the reader is referred to the literature for

a more complete treatment.( 2, 13)
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Altitude

Range

Relative Velocity

Inertial Velocity

Relative Flight

Path Angle

Mach Number

Axial Acceleration

Dynamic Pressure -

Pitch Angle of

Attack

Yaw Angle of Attack -

Pitch Attitude

Axial Force

Normal Force

Side Force

Weight

Longitude

Geocentric Latitude -

Table 1. Trajectory Parameter Definitions

- Distance above the earth (reference ellipsoid).

- Surface distance from launch pad to sub-vehicle point.

- Velocity referenced to a coordinate system rotating with the

earth.

- Velocity relative to inertial coordinate system.

- Angle between relative velocity vector and local horizontal

plane.

- Ratio of vehicle relative velocity to the local speed of sound.

- The longitudinal component of the quantity thrust minus drag,

divided by weight.

Aerodynamiic loading term equal to one-half the product of

ambient density and the relative velocity squared.

- The angle (alpha) between the projection of the relative velocity

vector onto the pitch plane and the vehicle longitudinal axis.

The angle (beta) between the projection of the relative velocity

vector onto the yaw plane and the vehicle longitudinal axis.

- Angle between the vehicle longitudinal axis and the space

fixed launch plane.

- Aerodynamic force along the vehicle longitudinal axis.

- Aerodynamic force in the pitch plane acting normal to the

vehicle longitudinal axis and applied at the normal force center

of pressure.

- Aerodynamic force in the yaw plane acting normal to the

vehicle longitudinal axis and applied at the yaw force center

of pressure.

- Total or gross weight of the vehicle.

- Angular position measured from Greenwich meridian,

positive west.

Angular position measured from the equator, positive north.
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APPENDIX A

TIME RATE OF CHANGE OF LINEAR AND ANGULAR

MOMENTUM FOR VARIABLE MASS SYSTEMS

A formal differentiation of the momentum quantity, mv, for a variable mass

system gives

d
--fmv_ = mb+ rhv
dt" "

This result is incorrect since the residual momentum of the expelled mass has not

been accounted for. The correct derivation is available in many standard texts on

dynamics and is given here for completeness.

Referring to Fig. A-l, we have for the momentum of the system at time t,

/2 = _m.n.
i 1 1

(Ai)

At time t + At, the momentum is

_. _- _i)]+A_ = E (m i+ rh. At) +/xR rh.At +i 1 (Ri i ) - 1 (Ri
(A2)

When the system is losing mass, rh i is a negative quantity.

is the velocity of the. ejected mass relative to the system.

a sense opposite to R i.

In the above equation, ci

It is negative if directed in

Subtracting Eq. (A1) from Eq. (A2), dividing through by At, and letting At

approach zero, we find

$.

= A = _m.'R. - _.5. (A3)
i 1 1 i 1 1

where F is the external force on the system.

It is also a straightforward procedure to determine the rate of change of

angular momentum of the variable mass system. Let O be some arbitrary point.

Then, by definition, the angular momentum about O at any time t is

=_5. ×m.R i
o i 1 1

(A4)
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Figure A-1. Momentum Change for Variable

Mass Systems

78



At time t + At, the angular momentum is

o o i I i

_" .2-"

+ AiSi) x (m i + _n.lAt) (R i + ARi)

+ (/5i+AjSi) x (-miAt) (_i + Ci)] (A5)

Subtracting Eq. (A4) from Eq. (A5), dividing through by At, and letting At approach

zero yields

h =_
o i i

-.x (m. R. - r_._i) + . x1 1 1 1

However

Z × m.R = x m i(R + x Ri i I i • i o = mPc o
(A6)

Therefore

h = Z[15 x (m.R.-l_n 5.) +mp x R (A7)o i i 1 1 i 1 C O

The use of Eq. (A7) in writing the expression for the moment about an

arbitrary point O requires some caution• The latter is obtained as follows. For an.___y

system (variable mass or not), we have from Eq. (A4)

Ih =_ 15
o i i

× d-_ (miRi) +_i x m.1 i

which, by virtue of Eq. (A6) becomes

" d • • •

h ° = _i/Si x _(miRi)+ mp x RC O

The first term on the right-hand side is in fact the definition of the moment about O.

We have therefore

-- £ . m
M = h -p x mR (A8)

O O C O
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The equationfor the momentaboutanarbitrary point differs from the usual
Euler equationby the additional term, Pc x miR o. The latter is zero if

a. The point, O, is stationary,

b. The velocity of the mass center relative to the origin is zero, or

c. The velocities, Pc and Ro are parallel.

For a fixed mass system, we find by direct expansion of Eq. (A4) and the relations of

Appendix B,

o = Pc x mRo + f" oS+_ibi x miP i (A9)

When the system mass is.invariant, this expression may be used in Eq. (A8). In the

variable mass case, the ho of Eq. (A7) must be used in Eq. (A8) with the result that

Mo becomes

ee

O = _ifSii x (mi R'-I l_li ci)i (A10)
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APPENDIXB

RELATIONSFORTHE INERTIA DYADIC

Considera rigid bodyof arbitrary shapeto which is attacheda bodycoordi-
nate frame (XB, YB, ZB) whoseorigin is at somearbitrary point, O.

The velocity of anymassparticle, mi, is then

R + ¢5 x _5
o i

where Ro is the velocity of O, 15i is a radius vector from O to m i, and o5 is the angular

velocity of the body• By definition, the moment of momentum (angular momentum)

about O is

I

= _. x m.(R +uS x _i) = i_]Pio i 1 1 0

x m.(cD x fSi)+ m P x R
1 C 0

If the point O is fixed or else is the center of mass, then this reduces to

= _Pi × m. (US x _i) (BI)
o i I

Now denote the components of 15i in the body frame by

X1_5i = Yi

Z

Define the moments of inertia of the body by

I =._m. (y: + z:)
xx i 1

2 2

I = _m +z i ).YY i i (xi

2I = Z m i (x + Yi )
zz i
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andthe productsof inertia as

=Emxy.
Ixy i i i 1

I = Em x z.
xz i i i 1

I = Em.y. z
yz i z 1 1

If we now define an inertia dyadic by

f

iiI
xx

= -jiI
xy

-ki I
xz

w

-ij I -ikI
xy xz

jjI jk
yy - Iy z

-kj I kk I
yz zz

(B2)

then Eq. (B1) may be expressed in concise form as follows

= I. 0_ (B3)
O

O; viz.,

The time rate of change of this quantity is equal to the external moment about

-- d
M = (I- O5) = fo c_+l" _ = I'. _+{- _+05 x h (B4)
o _ o

The following additional relations may be derived via straightforward expan-

sions and the rules of vector analysis.

f. _ = E_. x (c_ x m. 15.) (B5)
i I 11

_ x I-- O5 = _15i x I_ x m i(_ x /5i) l (B6)

{. 05 = _ x m (05 x bi ) +5. x (0_ x mi_ +z" i i z i) 5i x r_.z (05 x /5i)
(B7)

This last equation represents the time derivative of (I • o5) with respect to body

coordinates. Note that it contains a term due to mass variation. An alternate form
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of Eq. (B7), which is Useful in certain instances, may be obtained by noting that I may

be expressed as

where

f = Z m (/5i • Pi _' - Pi_Si ) (B8)i i

E = ii +jj +kk

is the unit dyad.

Then it follows that

. _ _ _I =_;m • E+
i i i i $_ $_ _?

+ _m (_i" PiE - PiPi)
i i

(B9)

83





PRECEDING PAGE 15LANK NOT FILMED.

APPENDIX C

THRUST OF A ROCKET ENGINE

Nomenclature

A area of exit surface
e

F body force per unit mass

M mass flow rate

fi outward unit vector normal to surface

p pressure in fluid

Pe pressure at exit surface

Po ambient pressure

q velocity of fluid

S surface area

t time

T thrust

V volume

p density of fluid

V( ) = gradient of( )

(-) - vector quantity

The derivationof the rocket thrustequationpresented in Appendix A isbased

on elementary considerationsand neglects several factors of significance. A more

accurate analysis should take account of the properties of compressible gas flow and

the pressure forces produced, as well as those due to momentum of particles. The

development thatfollowswillbe based on fundamental concepts inthe theory of

hydrodynamics.
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Consider any closed surface, S, bounding a volume, V. Let p be the pres-

sure, which is the same in all directions. Then the inward force on any element dS

is (-pfidS) where fi is the outward unit vector normal to dS. The resultant force on

S is

-/ pfidS or -/ g, pdV

S V

by the Divergence Theorem.

Denoting by F the body force per unit mass and letting p be the density at any

point of the fluid, the equation of motion is given by

dq
f p_-fdV= f _pdV-/vpdV
V V V

(C1)

where _ is the velocity of the fluid•

Since V is arbitrary, Eq. (C1) reduces to

d_ = _p_i- -vp

Eq. {C2) is the vector equation of motion of the fluid.

dh = 9-vh + m
dt _t

Hence

Now

(C2)

(C3)

+
V

But

v. (p_) = _(v •p_)+ p_. v

Therefore

=0 (C4)

(C5)

• (Pqq) - q(v" pq)+p_-- - Fp+ VP dV
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or

ff !
V V-(Pqq)-q(_. pq)+-_(pO)-q-._- - Fp+VP dV = 0

(C7)

By virtue of the equation of continuity

_p
v- p_ + _- = 0 (cs)

Eq. (C7) reduces to

• (pqq) +-_(pq) - FD+Vp dV = 0 (C9)

By the Divergence Theorem

f V. (p_]q) dV = ] fi • (pq_) dS
f

V S
(C10)

and

fvpdV =/ fipdS
V S

(C11)

There Eq. (C9) becomes

5-'t p_tdV- FDdV+ ft. (pqq)dS + fipdS = 0

V V

(C12)

This is the momentum equation of hydrodynamics.

to
For steady-state conditions in the absence of body forces, Eq. (C12) reduces

Sf fi • {p_)dS + : fipdS = 0 (C13)
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Consider now a closed surface in which there is one orifice of area A e through

which fluid flows outward with velocity q. For this case, Eq. (C13) becomes

f n" (pqq) dSl + f fiPcdS2 + f fipdS 1

S 1 S 2 S 1

= 0 (C14)

where the first and third integrals are evaluated across the exit surface area A e, the

second integral is evaluated over the surface bounding the enclosed fluid (i. e., walls

of nozzle and combustion chamber), and Pc represents the pressure within the closed

surface. If we now let Pe be the pressure at the exit surface of area Ae, and denoting

the ambient pressure by Po, we have

n. (_)PAe + _ + _ (Pe- Po )Ae = 0 (C15)

where

fiPc dS2
S

2

= thrust of rocket

Referring to the configuration of Fig. C-1 and dropping the vector notation

after taking due account of signs, we have

T = M q + (Pe - Po )Ae (C16)

where M is the flow rate given by

M = pqA
e

We have the result that for a compressible fluid, the thrust equation contains the

additional term, (Pc - Po) Ae" This thrust is a maximum when Po = 0, i.e., in vacuo.

T n. (q q)pA
e _ (Pe-Po) A e

Figure C-1. Rocket Engine Thrust Configuration
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APPENDIXD

GEOPHYSICALCONSTANTS*

MeanRadius(spherical earth)

R = 20,925, 631 ft
e

Polar Radius (oblate spheroid earth)

REB = 20, 855,965 ft

Equatorial Radius (oblate spheroid earth)

REA = 20, 926,428 ft

Rotation Angular Velocity of Earth

-5
= 7.29211508 × i0 rad/sec

E

Reference Gravity Acceleration

gref = 32. 174 ft/sec 2

Gravitational Constant

1016 2= 1.407698 x ft3/sec

One International Nautical Mile = 6076.1 ft

One Statute Mile = 5280.0 ft

One Astronomical Unit = 9. 289742538 x 107 statute miles

*These values are abstracted from Ref. 15
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